
Proceedings of the IASTED International Conference
Eleventh IASTED International Conference on Parallel and Distributed Computing and Systems
November 3-6, 1999, Boston, USA

A Method and a Genetic Algorithm for Deriving Protocols
for Distributed Applications with Minimum Communication Cost

Khaled El-Fakih† Hirozumi Yamaguchi‡ Gregor v. Bochmann†

†School of Information Technology and Engineering ‡Graduate School of Engineering Science
University of Ottawa Osaka University

Ottawa, Ontario, K1N 6N5, CANADA Toyonaka, Osaka, 560-8531, JAPAN
{kelfakih, bochmann}@site.uottawa.ca h-yamagu@ics.es.osaka-u.ac.jp

Abstract We consider a set of rules for deriving the
specification of the protocol of a distributed system from
a given specification of services, and define and formu-
late the message exchange optimization problem using a
0-1 integer programming model. This problem is about
determining the minimum number of messages to be
exchanged between the physical locations of the dis-
tributed system, in order to reduce the communication
cost. We then present a genetic algorithm for solving
this problem. The main advantage of this algorithm,
in comparison with exact algorithms, is that its com-
plexity remains manageable for realistic large specifica-
tions. The experimental results show that the minimum
number of messages to be exchanged is found in a very
reasonable time.

keywords protocol synthesis, service specification,
protocol specification, communication cost, 0-1 integer
linear programming, genetic algorithm

1 Introduction

Protocol synthesis methods[2, 3, 4, 5] (for survey see
[1]) have been used to derive a specification of a dis-
tributed system (called a protocol specification) auto-
matically from a given specification of the services to be
provided by the distributed system to its users (called a
service specification). The service specification is writ-
ten like a program of a centralized system, and does not
contain any specification of message exchange between
different physical locations. However, the protocol spec-
ification contains the specification of the communication
between the different protocol entities (PE’s) at the dif-
ferent locations. Therefore, in protocol synthesis, we
first have to decide how messages are exchanged between
the different PE’s. For this, we use the derivation pol-
icy presented in our previous work [4]. Then, we have to
decide how to optimize this exchange of messages, since
we consider communication costs as a primary cost cri-
teria for distributed systems ([3] started this first, for
an EFSM based synthesis method).

In the context of distributed applications, one also
has to deal with the allocation of resources to the dif-

ferent physical locations. As an example, we consider
a distributed database application which uses several
databases such as a customer database and an account
database located on different computers. To complete
a transaction in a speedy and efficiently manner, the
number of messages exchanged between the databases
and the client should be minimized.

In this paper, we consider the automatic derivation
of a protocol specification from a given service specifi-
cation when the allocation of the resources to the differ-
ent protocol entities (PE) is given [4]. More specifically,
we deal with the problem of optimizing the number of
messages to be exchanged between the PE’s during the
execution of the protocol, by formulating it as a 0-1 in-
teger linear programming (ILP) problem. Moreover, we
present a new hybrid genetic algorithm for solving this
optimization problem. The main advantage of this algo-
rithm, compared with other exact algorithms for solving
0-1 ILP problems, is the fact that its complexity remains
manageable for realistic large specifications. For exam-
ple, existing branch-and-bound algorithms have expo-
nential complexity, and spend too much time for solving
large problems. Moreover, cutting plane methods some-
times work well, but sometimes not at all, especially for
large problem sizes.

2 Service Specification and Pro-
tocol Specification

In this paper, we describe service and protocol speci-
fications using a Petri net model extended with regis-
ters (representing computational data) and gates (rep-
resenting service access points), in the following sim-
ply called Petri Net with Registers (PNR in short).
Each transition t in PNR has a label 〈C(t), E(t),S(t)〉,
where C(t) is a pre-condition statement (one of the fir-
ing conditions of t), E(t) is an event expression and
S(t) is a set of substitution statements. For exam-
ple, in Fig. 1(a), C(t1) =“TRUE”, E(t1) =“G1?i” and
S(t1) =“R1 ← keyword(i), R2 ← condition(i)”. Note
that G1 is a gate, R1 and R2 are registers and i is an
input variable. t1 can fire if the value C(t1) is true and

302-174 -1-

G1?i

G1 G2

ID(w, Mg1)

g21?w

g21!Ma2

ID(w, Mg3)

g12?w

R3R2R1 R4 R5

g12!Mg1[R1]

Rtmp1 Rtmp2 Rtmp3

g13!Mb2[R1,R2]

index_search(R3,Rtmp2.R1)
!= NULL

g13?w
[Rtmp1.R5 <- w]

[Rtmp1.R5 <- w]
g13?w

g23!Mb2

[Rtmp2.R1<-w]

ID(w, Mb2)

g31?w g31!Mg2[R5]
[Rtmp3.R1 <- w.R1
 Rtmp3.R2 <- w.R2]

g32?w g31!Mg2[R5]

[R5 <- NULL]

ID(w, Mb2)index_search(R3,Rtmp2.R1)
== NULL

G2!"not found"

ID(w, Ma2) ID(w, Mg2)

G1!Rtmp1.R5

G2!"entry exists"

[R5 <- search
(R4, Rtmp3.R1, Rtmp3.R2)]

g12 g13 g21 g23 g32 g31

PE1 PE2 PE3

[R1 <- keyword(i),
 R2 <- condition(i)]

G2!"entry exists"
[R5 <- search(R4, R1,R2)]

[R1 <- keyword(i),
 R2 <- condition(i)]

TRUE

G1!R5

TRUE

T2T1 T4

R2 R5R4R1

G1 G2

G1?i

dbindex

[R5 <- NULL]
G2!"not found"

R3
db-result

T3

index_search(R3, R1) != NULL

index_search(R3, R1) == NULL

input1 input2

(a) Service Specification (b) Protocol Specification

Figure 1: Service and Protocol Specifications
if an input is given through gate G1. If t1 fires, E(t1)
is executed (the input value is assigned to input vari-
able i) and then the statements in S(t1) are executed
simultaneously (the values of R1 and R2 are changed).

At a highly abstracted level, a distributed system
is regarded as a centralized system which works and pro-
vides services as a single “virtual” machine. The virtual
machine has all the gates and registers used by the sys-
tem. The number of actual PE’s and communication
channels among them are hidden. The specification of
the distributed system at this level is called a service
specification and denoted by Sspec.

Fig. 1(a) shows Sspec of a simple distributed sys-
tem written in the PNR model. An input which con-
tains a pair of a keyword and a condition given through
G1 enables t1 fire. If it fires, the values of the in-
put parameters are stored in R1 and R2, respectively.
Then either t2 or t3 may fire, depending on the value
of index search(R3, R1) (the result of index searching
using keyword). t2 can fire if the value of the pre-
condition “index search(R3, R1)! = NULL” is true,
otherwise t3 can. If t2 fires, the system outputs a
message “entry exists” through G2, and then executes
“R5 ← search(R4, R1, R2)” (searching the database).
If t3 fires, the system outputs a message “not found”
through G2 and then the value of R5 is set to NULL.
Finally, t4 fires and the value of R5 is output through
G1. Then the system will have the initial marking again.

Realistically, a distributed system is a communica-
tion system which consists of p protocol entities PE1,
PE2, ... and PEp. Any pair of PE’s, PEi and PEj, have
a duplex reliable communication channel with buffers of
infinite capacity. The PEi’s (PEj’s) side of the commu-
nication channel is represented as gate gij (gji). Gates
and registers (called resources) are allocated to PE’s
(physical places). We must specify the behavior of each
PE in order to implement the distributed system. This
indicates the communication between the PE’s. A spec-
ification of a protocol entity PEk is called a protocol en-
tity specification and denoted by Pspeck. A set of p pro-
tocol entity specifications 〈Pspec1, ..., P specp〉 is called
a protocol specification and denoted by Pspec〈1,p〉.

Fig. 1(b) shows Pspec〈1,p〉 of the distributed sys-
tem written in the same model. An event expression
such as “g12!Mg1[R1]” at PE1 means that a message

is sent from PE1 to PE2, containing an identifier Mg1

and the value of register R1. A single message may
contain values of several registers and also values of in-
put variables. PE2 receives the message sent by PE1

through an event “g21?w” (which means that the mes-
sage is assigned to the input variable w). ID(Mg1 , w)
is a predicate whose value is true iff the identifier of the
message stored in the input variable w is Mg1. PE1 first
checks the value of the pre-condition “TRUE” (which
is always true) and executes an input event “G1?i”, cor-
responding to the event of t1 in Sspec. The input value
is assigned to i. Then the substitution statements of
t1 in Sspec are executed and the values of keyword(i)
and condition(i) are stored in R1 and R2, respectively.
Then PE1 sends a message to PE2 containing the value
of R1. PE2 receives this message and checks the value
of the pre-conditions “search(R3, R1)! = NULL” and
“search(R3, R1) == NULL”, using the values of R1

received from PE1 and its own R3
1 . Now, assuming

that the value of “search(R3, R1)! = NULL” is true,
PE2 executes the event “G2!entry exists” correspond-
ing to the event of t2 in Sspec. Then PE2 sends a mes-
sage to PE1 enabling PE1 to send the values of both
R1 and R2 to PE3. After receiving this message, PE1

sends these values to PE3 in a single message. PE3 re-
ceives the message, executes the substitution statement
“R5 ← search(R4, R1, R2)” using the values of R1 and
R2 received from PE1, and sends the value of R5 to
PE1. PE1 receives the message and executes an event
“G1!R5”, which is the same event as t4 in Sspec. At
this point, all PE’s have again their initial markings.

We assume that an allocation of gates and regis-
ters to PE’s (called a resource allocation) is given. The
protocol synthesis method consists of deriving a proto-
col specification Pspec〈1,p〉 using a given fixed resource
allocation, such that the distributed system of PE’s pro-
vides the same services as a given service specification
Sspec.

1 We assume that each PEi has a register Rtmpi which tem-
porarily keeps several values given through gates (message con-
tents and user inputs). The values in Rtmpi can be distinguished
by adding the name of the value such as Rtmpi.R3.

-2-

3 Protocol Derivation and Mes-
sage Optimization

3.1 Derivation Method

A method for deriving a protocol specification
Pspec〈1,p〉 with a given resource allocation is described
here. It is based on the simulation of each transition of
the service specification by corresponding transitions of
the PE’s in the protocol specification.

For a given transition t of Sspec, the PE that has
gate Gs used in E(t) checks the value of C(t) (pre-
condition statement) and executes E(t) (event expres-
sion). After that, the PE sends messages called α-
messages to the PE’s which have the registers used in
the arguments of S(t) (substitution statements). In
response, these PE’s send the register values to the
PE’s which have the registers to be updated in S(t)
as messages called β-messages. The substitution state-
ments are executed and notification messages called γ-
messages are sent to those PE’s which will start the exe-
cution of the next transitions. In Fig. 2, we present our
derivation method of the service specification as a set
of rules which specify how PE’s execute each transition
of Sspec. The method to construct a protocol specifi-
cation in PNR model based on this derivation method
is described in [4].

For example, for transition t2 of Sspec in Fig. 1(a),
PE2 checks the value of the pre-condition of t2 and ex-
ecutes the event of t2. After that PE2 sends an α-
message to PE1, to let PE1 send the value of registers
R1 and R2 to PE3 as a β-message. PE3 receives the β-
message and now knows the values of the arguments in
the substitution statement of t2. Therefore PE3 changes
the value of R5 and sends a γ-message to PE1, to let
PE1 know that the execution of t2 has been finished.

3.2 Message Optimization Problem

The number of messages exchanged between different
PE’s for the execution of a transition in Sspec may not
be unique because a register may be allocated to more
than one PE and several input/register values may be
sent in one message. For example, let us assume that
there are eight PE’s as in Fig. 3(a). PE6, PE7 and
PE8 should change the values of registers R5, R6 and
R7, respectively. However, they do not have the reg-
isters necessary to change these values as PE2, PE3,
PE4 and PE5 do. PE1 is PEstart(t). Fig. 3(a) shows
the optimal way that uses five messages to send the
necessary values to change the values of R5, R6 and R7.
However, there are many ways to send these values, Fig.
3(b) is one of them, and it uses six messages.

We consider the number of messages as the pri-
mary cost criteria for distributed systems. Moreover,
if we assume that the size of a message is small, then
the overhead for sending it as a packet through high
speed network is high. To reduce this cost, the min-
imum number of messages exchanged for simulating a
transition t of Sspec for a given resource allocation has

[Action Rules]

(A1) The PE which has the gate Gs appearing in E(tx)
checks: (a) the value of C(tx) is true, (b) the simula-
tion of the previous transitions of tx has been finished
and (c) inputs have been given through Gs, and then
executes E(tx). This PE is denoted by PEstart(tx).

(A2) After (A1), PE’s which have registers appearing in
the right-hands of statements in S(tx) execute these
statements. The set of these PE’s are denoted by
PEsubst(tx).

[Message Exchange Rules]

(M1) PEstart(tx) may send α-messages to PE’s after
(A1).

(M2) PEstart(tx) or each PE PEi which has received
an α-message may send (a) a β-message to PEj ∈
PEsubst(tx) and (b) a θ-messages to PEk ∈
PEstart(tx••) after (M1). Note that PEstart(tx••)
is a set of PE’s where a transition ty ∈ tx • • exists
and PEk = PEstart(ty).

(M3) At least one β-message must arrive at each PE PEj ∈
PEsubst(tx) (except PEstart(tx)) before (A2).

(M4) Each PE PEj ∈ PEsubst(tx) must send a γ-
messages to each PE PEk ∈ PEstart(tx • •) after
(A2).

(M5) At least one θ-message must arrive at each PE PEk ∈
PEstart(tx••) if S(tx) = ∅ and PEk 6= PEstart(tx).

[Message Content Rules]

(C1) Each β-message may contain the values of regis-
ters allocated to its sender PE. If the sender PE is
PEstart(tx), the β-message can also contain the val-
ues of inputs.

(C2) Each PEj ∈ PEsubst(tx) may use the values con-
tained in β-messages to execute the statements in
S∗(tx).

(C3) Each γ-message (θ-message) can contain the values
of registers allocated to its sender PE.

(C4) Each PEk ∈ PEstart(tx • •) can use the values con-
tained in the γ-message (θ-message) to check the
value of C(ty) and execute E(ty) where ty ∈ tx • •.

Figure 2: Derivation Method
to be determined.

Below we formulate this message optimization
problem, based on our derivation method, in the form
of an 0-1 ILP problem.

3.3 Integer Linear Programming Model
for Message Optimization

We introduce the following 0-1 integer variables for each
tx of Sspec, which represent the fact that a message is
sent from one PE to another.
• αu,i: its value is one iff PEu which has gate Gs used
in E(tx) sends an α-message to PEi; otherwise zero.
• βi,j : its value is one iff PEi sends a β-message to PEj;
otherwise zero.
• βi,j [Rw] (βi,j [iz]): its value is one iff the β-message
sent from PEi to PEj contains the value of register Rw

(input variable iz); otherwise zero.

-3-

PE1 PE2

α

β

R5

R4

R2

R3 R3

R1 R1

R2

R4

R1

R3

R4

R2

R6 R7

[R7<-R2+R3+R4]

PE3 PE4 PE5 PE6 PE7 PE8

α

β

β

[R2,R3,R4]

[R1,R4]

[R1,R2]

[R6<-R1+R4]

PE1 PE2

α

R5

R4

R2

R3 R3

R1 R1

R2

R4

R1

R3

R4

R2

R6 R7

[R7<-R2+R3+R4]

PE3 PE4 PE5 PE6 PE7 PE8

α β

β

[R1,R2]

[R2]

[R3,R4]

[R6<-R1+R4]

β
β [R1,R4]

[R5<-R1+R2]

(a) (b)

[R5<-R1+R2]

Figure 3: (a) Optimal and (b) Non-Optimal Message
Exchange

• θi,j : its value is one iff PEi sends a θ-message to PEj;
otherwise zero.
• θi,j [Rw]: its value is one iff the θ-message sent from
PEi to PEj contains the value of register Rw; otherwise
zero.
• γi,j [Rw]: its value is one iff the γ-message sent from
PEi to PEj contains the value of register Rw; otherwise
zero.

Using the above variables, we formulate the mes-
sage optimization problem using several constraints and
the following objective function Z.

(min)Z =
∑

i

αu,i +
∑

i

∑
j

βi,j +
∑

i

∑
k

θi,k

The following three constraints are necessary according
to the definition of variables. For example, βi,j must be
one if the value of βi,j [Rw] is one.

βi,j − βi,j [Rw] ≥ 0 (1)
βi,j − βi,j [iz] ≥ 0 (2)

θi,j − θi,j [Rw] ≥ 0 (3)

The following constraints represent policy (M2).
αu,i − βi,j ≥ 0 (4)
αu,i − θi,k ≥ 0 (5)

The following constraint represents policy (M3).∑
i

βi,j ≥ 1 (6)

The following constraint represents policy (M5).∑
i

θi,k ≥ 1 (7)

Constraints (8) and (9) are necessary to represent pol-
icy (C2), if Rw is not allocated to PEj and needed
by PEj to execute statements in S(tx), and if PEj 6=
PEstart(ty) but is required by PEj to execute state-
ments in S(tx), respectively.∑

i

βi,j [Rw] ≥ 1 (8)

βu,j [iz] = 1 (9)

The following constraint is necessary to represent policy
(C4) if Rw is not allocated to PEk but is required by
PEk to check the value of C(ty) or to execute E(ty)
where ty ∈ tx • •.∑

i

(θi,k [Rw] + γi,k[Rw]) ≥ 1 (10)

4 A Genetic Algorithm for Solv-
ing the Message Optimization

Problem

Genetic algorithms are based on the mechanics of natu-
ral evolution [8]. Throughout their artificial evolution,
successive generations each consisting of a population of
possible solutions, called individuals (or chromosomes,
or vectors of genes), search for beneficial adaptations
to solve the given problem. This search is carried out
by applying the Darwinian principles of “reproduction
and survival of the fittest” and the genetic operators of
crossover and mutation which derive the new offspring
population from the current population.

Reproduction involves selecting, in proportion to
its fitness level, an individual from the current popula-
tion and allowing it to survive by copying it to the new
population of individuals. The individual’s fitness level
is usually based on the cost function given by the prob-
lem under consideration. Then, crossover and mutation
are carried on two randomly chosen individuals of the
current population creating two new offspring individu-
als. Crossover involves swapping two randomly located
sub-chromosomes (within the same boundaries) of the
two mating chromosomes. Mutation is applied to ran-
domly selected genes, where the values associated with
such a gene is randomly changed to another value within
an allowed range. The offspring population replaces the
parent population, and the process is repeated for many
generations.

Typically, the best individual that appeared in any
generation of the run (i.e. best-so-far individual) is des-
ignated as the result produced by the genetic algorithm.

In the following sections, we describe how genetic
algorithms can be adapted for solving the message op-
timization problem. We present the components of a
hybrid genetic algorithm (GA) for minimizing the cost
function Z defined in Section 3.3. The algorithm is hy-
bridized by procedures and design choices that account
for both the likelihood of producing infeasible individ-
uals as a result of crossover and mutation, and for the
premature convergence to a local optima.

4.1 Population and Chromosomal Rep-
resentation

GAs population is an array of POP individuals. An
individual in the population is encoded as an (n + m)-
element vector [X1, X2, ..., Xn, Xn+1, ..., Xn+m] where
n is the number of α-, β-, and γ-messages of the individ-
ual, and the sub-vector X1, X2, ..., Xn corresponds to
a candidate solution of the optimization problem. The
other sub-vector Xn+1, ..., Xn+m corresponds to those
m variables of the given problem which only appear in
the problem constraints, for example βij [Rw] variables.
An element (gene) Xj = 1 (or 0), for j ∈ [1...n], indi-
cates the inclusion (or exclusion) of message j from the
selected subset of messages to be exchanged. The initial
population of individuals is randomly generated.

-4-

Yes No

Yes

Candidate Solut ion

Feasible?

Yes NoNo
Prob.<0.5? Prob.<0.5?

Hi l l -Cl imb Penal ize Random
-Feasibi l ize

Compute Z

Figure 4: Feasibilization, Penalizing and Hill-climbing

4.2 Objective Function Evaluation

The fitness of an individual Z is evaluated by adding the
genes of the first n-elements of an individual. Hence-
forth, the optimal number of messages to be exchanged
between different PE’s corresponds to the minimum
value of the fitness Z of all feasible individuals.

4.3 Reproduction Scheme and Elitism

In GA, the whole population is considered a single re-
production unit within which random selection is per-
formed. Our reproduction scheme involves elitist rank-
ing, followed by random selection of mates from the list
of reproduction trials (or copies) assigned to the ranked
individuals. In the ranking scheme [6], the individuals
are sorted by their fitness value. After sorting, each indi-
vidual is assigned a rank based on a scale of equidistant
values for the population. The ranks assigned to fittest
and least-fit individuals are 1.2 and 0.8, respectively.
Individuals with ranks greater than 1 are first assigned
single copies. Then, the fractional part of their ranks
and the ranks of the lower half of individuals are treated
as probabilities for random assignment of copies.

It has been found that ranking based selection with
a maximum rank of 1.2 produces individual survival per-
centage of 92 to 98% in different generations[6]. This
helps in maintaining population diversity and control-
ling premature convergence. Elitism is used to exploit
good building blocks and to ensure that good candidate
solutions are saved if the search is to be truncated at
any point. Preservation of the fittest individual is done
by replacing the fittest-so-far individual in place of the
least-fit individual if it is better than the current-fittest.

4.4 Genetic Operators

The genetic operators employed in GA are crossover and
mutation. Pairs of individuals are randomly selected
from the mating pool. Each pair of these strings un-
dergoes crossover as follows: an integer position k along
the string is selected at random between [1..(n + m)],
where n + m is the string length. The two new strings
are created by swapping all characters (genes) between
k + 1 and n + m inclusively. The standard mutation
operator is employed. Strings and gene positions where
the alteration of the value is going to occur are selected
randomly. A mutation rate of 0.02 and crossover rate
of 0.7 [9] are used in our implementation.

4.4.1 Feasibilization, Penalizing, and Hill
Climbing

Standard genetic operators like crossover and mutation
frequently produce infeasible solutions for constrained
optimization. Our GA uses the structure of the tech-
nique described in [7] which is depicted in Figure 4 and
presents new penalization, random feasibilization, and
hill-climbing procedures as described in detail in this
subsection.

At the detection of an infeasible string i, our GA
uses the suggestion of [10] and computes a penalty func-
tion, p, that starts with relaxed penalties and tightens
them as the run progresses. We used:

p = kq

(
t

T

)
f

n∑
i=1

di

where k is the number of objective function variables, q
is a parameter, f is the average fitness of the population
at the current generation t, T is the maximum number
of generations, n is the number of problem constraints,
and di returns the degree of violation of constraint i
(absolute value of difference between the left and right
hand sides of constraint i) . We experimented with q =
0.3, T = 3000.

The value of this function is added to Z. The in-
feasible string is then allowed to be part of population
intact. In this way the penalized infeasible string will
have a lower probability of survival. However, 50% of
the infeasible offspring are randomly selected for heuris-
tic completion.

A random feasibilization heuristic is applied by
randomly selecting an infeasible individual, then genes
which are capable of reducing this violation are selected.
This selection is done by navigating throughout all the
problem constraints and allocating those genes which
make them satisfiable. In our case, this means that the
algorithm increases, by the number of selected genes the
number of messages to be exchanged between the differ-
ent PE’s. This helps to ensure that the population in-
cludes some feasible candidates that could be exploited
in subsequent generations, and helps maintain the locus
of the search near the feasible region.

To refine the solution quality, a simple problem-
specific hill-climbing procedure which may decrease the
individual’s fitness values is incorporated. Our GA ran-
domly selects one-half of all feasible solutions formed
in each generation and applies the following fast hill-
climbing procedure. The procedure search the space
nearby an individual solution by selecting all those genes
which are capable of reducing the fitness value while pre-
serving the feasibility status. This selection is done by
navigating throughout the problem constraints in an or-
dered way respecting the relationship between the differ-
ent problem variables. Then, the algorithm decrements
the values of the selected genes, that is the number of
messages exchanged is decremented by the number of
selected genes. This hill-climbing procedure enables in-
dividuals to rapidly climb the peaks which speeds up
the evolution process.

-5-

Table 1: The Execution Times of GA for T1, ..., T20

Tr. Service
Spec.

Alloc. ILP Result

#R #SB#US #PE#AP #VR #CT #MS TM(sec)

T1 10 4 4.3 10 2.0 229 245 28 0.52
T2 10 4 4.0 15 1.5 205 204 21 0.38
T3 10 4 4.0 10 2.7 233 243 24 0.47
T4 15 5 4.4 15 3.2 836 877 46 0.93
T5 20 5 4.4 20 3.0 825 863 51 0.75
T6 15 5 4.4 30 2.2 840 852 52 0.81
T7 15 5 4.6 20 4.3 1480 1514 68 2.27
T8 20 6 4,3 20 4.4 1566 1617 70 2.70
T9 15 6 4.3 18 5.1 1930 1980 62 3.69
T10 15 6 4.3 20 5.9 1970 2041 77 3.80
T11 15 6 4.3 25 5.1 2012 2076 80 5.11
T12 20 7 4.0 30 4.4 2530 2609 94 7.06
T13 20 7 4.0 30 4.6 2324 2365 70 4.29
T14 20 7 4.7 30 4.4 2524 2637 117 8.30
T15 20 10 4.0 30 4.7 3301 3410 106 9.78
T16 20 9 4.1 30 5.0 3264 3410 145 13.90
T17 20 10 4.2 40 4.2 3333 3452 134 15.59
T18 20 9 4.0 30 5.7 3985 4133 151 21.82
T19 20 9 4.5 40 4.5 3768 3901 140 18.30
T20 20 9 4.5 45 4.0 3614 3717 159 16.46

4.5 Termination Criterion and POP
Size

The termination criterion is satisfied when we converge
to a solution. In this work, convergence is indicated
when the best-so-far string does not change its Z value
for 20 consecutive generations. We experimented with
different values of POP size , and it was found that POP
of value 20 yields the desired best solution quality.

5 Experimental Results

We have applied our derivation method to distributed
database transactions that may use and simultaneously
update several databases over a network. For example,
let us suppose that a bank has x accounts databases
Racc1, ... and Raccx, located at some of its branches.
Also, let us suppose that a given transaction should find
the new entries in each accounts database and update
y relational customer databases Rcus1, ... and Rcusy

that are also located at some of the bank’s branches. We
have modeled 20 transactions as PNR transitions (T1 to
T20), with various number of registers on various allo-
cations. Table 1 shows the data of these transactions.
In the table, #R is the number of registers, #SB is the
number of registers whose values are changed, #US is
the average number of registers used in a statement,
#PE is the number of PE’s, and #AP is the average
number of PE’s which have the same register.

For each transaction of Table 1, we have gener-
ated a corresponding ILP problem and measured the
execution time taken by the GA for solving it. The ex-
periments have been done using a PC (with Pentium-II
266 MHz). #VR is the number of problem variables,
#CT is the number of constraints, #MS is the mini-

mum number of messages exchanged, and TM is the
execution time of the GA (in seconds).

For all transactions of Table 1, even for those
that involved large numbers of variables #VR and con-
straints #CT, the GA was able to converge to a solution
in a fairly reasonable time.

6 Conclusion and Future Work

Based on our previous work on protocol synthesis[4], we
have defined and formalized the message exchange op-
timization problem, in order to reduce the cost of com-
munications between different derived distributed speci-
fications (or PE’s). The optimization problem is formu-
lated using the 0-1 integer linear programming model,
and solved using an adapted genetic algorithm. This al-
gorithm is shown to find a solution for the optimization
problem in a very reasonable time.

Our future work is to develop a distributed environ-
ment including our methods for protocol derivation, and
formulation plus optimization of the message exchange
problem. WWW servers with Java servlets would be a
good implementation environment for such a purpose.

References

[1] K. Saleh, Synthesis of Communication Protocols:
an Annotated Bibliography, ACM SIGCOMM Comp.
Comm. Review, 26(5), 1996, pp. 40–59.

[2] C. Kant, T. Higashino and G.v. Bochmann, Deriving
protocol specifications from service specifications writ-
ten in LOTOS, Distributed Computing, 10(1), 1996, pp.
29–47.

[3] T. Higashino, K. Okano, H. Imajo and K. Taniguchi,
Deriving Protocol Specifications from Service Specifica-
tions in Extended FSM Models, Proc. ICDCS-13, 1993,
pp. 141–148.

[4] H. Yamaguchi, K. Okano, T. Higashino and K.
Taniguchi, Synthesis of Protocol Entities’ Specifications
from Service Specifications in a Petri Net Model with
Registers, Proc. ICDCS-15, 1995, pp. 510–517.

[5] A. Al-Dallal and K. Saleh, “Protocol Synthesis Using
the Petri Net Model,” Proc. PDCS’97, 1997.

[6] J.E. Baker, Adaptive Selective Methods for Genetic Al-
gorithms, Proc. Int. Conf. on Genetic Algorithms, 1985,
pp. 101–111.

[7] F. Easton and N. Mansour, A Distributed Genetic Al-
gorithm for Employee Staffing and Scheduling Prob-
lems, Proc. Int. Conf. on Genetic Algorithms, 1993, pp.
360–367.

[8] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization and Machine Learning (Addison-Wesley,
1989).

[9] J.J. Grefenstette, Optimization of Control Parameters
for Genetic Algorithms, IEEE Trans. Systems, Man,
and Cybernetics, 16(1), 1986, pp. 122–128.

[10] J.T. Richardson, M.R. Palmer and G. Liepins and M.
Hilliard, Some Guidelines for Genetic Algorithms with
Penalty Functions, Proc. Int. Conf. on Genetic Algo-
rithms, 1989, pp. 191–197.

-6-

